Enter the simplified form of the complex fraction in the box. Assume no denominator equals zero.
Answer:
[tex]\frac{(9-x)}{3x}[/tex]
Step-by-step explanation:
we have
[tex]\frac{\frac{2}{x-3}-\frac{3}{x}}{\frac{3}{x-3}}[/tex]
step 1
Solve the numerator of the quotient
[tex]\frac{2}{x-3}-\frac{3}{x}=\frac{2x-3(x-3)}{(x-3)x}=\frac{2x-3x+9}{(x-3)x}=\frac{9-x}{(x-3)x}[/tex]
step 2
substitute in the original expression
[tex]\frac{\frac{9-x}{(x-3)x}}{\frac{3}{x-3}}[/tex]
[tex]\frac{(x-3)(9-x)}{3x(x-3)}[/tex]
step 3
simplify
[tex]\frac{(9-x)}{3x}[/tex]