What is the range of f(x) = (three-fourths) Superscript x – 4?




{y | y > –4}



Left-brace y vertical line y greater-than three-fourths right-brace



{y | y < –4}



Left-brace y vertical line y less-than three-fourths right-brace

Respuesta :

Answer:

Option 1 -  [tex]\{y|y>-4\}[/tex]

Step-by-step explanation:

Given : Function [tex]f(x)=(\frac{3}{4})^x-4[/tex]

To find : What is the range of f(x) ?

Solution :

Function [tex]f(x)=(\frac{3}{4})^x-4[/tex]

We put some value of x to determine the range,

For x=-1,

[tex]f(0)=(\frac{3}{4})^{-1}-4=0.33[/tex]

For x=0,

[tex]f(0)=(\frac{3}{4})^0-4=-4[/tex]

For x=1,

[tex]f(0)=(\frac{3}{4})^1-4=-0.25[/tex]

For x=2,

[tex]f(0)=(\frac{3}{4})^2-4=-0.4375[/tex]

As we see that, the value of y is greater than -4.

Therefore, the range of the function is [tex]\{y|y>-4\}[/tex]

So, Option 1 is correct.

Answer:

Option A.

Step-by-step explanation:

The given function is

[tex]f(x)=\frac{3}{4}^{x}-4[/tex]

We need to find the range of f(x).

The given function can be rewritten as

[tex]y=\frac{3}{4}^{x}-4[/tex]

Range is the set of output values.

If [tex]a^x[/tex], where a>0, then the value of [tex]a^x[/tex] is always greater than 0.

Using the above property, we get

[tex]\frac{3}{4}^{x}>0[/tex]

Subtract 4 from both sides.

[tex]\frac{3}{4}^{x}-4>0-4[/tex]

[tex]y>-4[/tex]

Range = {y | y > –4}

Therefore, the correct option is A.

Q&A Education