Answer:[tex]k=\frac{12Mg}{h}[/tex]
Explanation:
Given
Mass of Elevator is M
maximum acceleration is 5g
Cable breaks at a height of h above spring
Let K be the spring constant
For Elevator
[tex]F-Mg=M(a)[/tex]
[tex]a=5g[/tex]
[tex]F-Mg=5Mg[/tex]
[tex]F=6Mg[/tex]
Suppose spring compresses to a distance x
thus [tex]kx=6Mg[/tex]
[tex]x=\frac{6Mg}{k}[/tex]
Potential Energy is converted to Elastic Potential Energy
thus
[tex]Mg(h+x)=\frac{kx^2}{2}[/tex]
[tex]Mg(h+\frac{6Mg}{k})=\frac{k}{2}\times (\frac{6Mg}{k})^2[/tex]
[tex]Mgh+\frac{6M^2g^2}{k}=\frac{18M^2g^2}{k}[/tex]
[tex]12\frac{M^2g^2}{k}=Mgh[/tex]
[tex]k=\frac{12Mg}{h}[/tex]