Respuesta :
Answer:
270 μA
Explanation:
Use the magnetic field due to long, straight wire and solve for current I.
[tex]B= \frac{\mu_0I}{2\pi r}[/tex]
[tex]I= \frac{2\pi r B}{\mu_0}[/tex]
plug in the values
[tex]I= \frac{2\pi(5.40\times10^{-2})\times10\times10^{-6}\times10^{-4}}{4\pi\times10^{-7}}[/tex]
= 2.7×10^{-4)×10^6
=270 μA
The current that flows in the heart is 270 μA
Using the magnetic intensity relation, the current flowing in the heart based on the given parameters is [tex] I = 0.027 \times 10^{-3} \: Ampere[/tex]
Given the Parameters :
- Radius, r = 5.40 cm = 0.054 m
- Magnetic field intensity, B = 10μG = [tex] 10 \times 10^{-10} [/tex]
[tex] I = \frac{2πrB}{μ_{0}}[/tex]
Substituting the values into the formula to obtain the current, I :
I = \frac{2π(0.054)(10 \times 10^{-10}}{4π \times 10^{-7}}[/tex]
[tex] I = 0.0027 \times 10 \times 10^{-10+7} [/tex]
[tex] I = 0.027 \times 10^{-3} [/tex]
Therefore, the current flowing is [tex] 0.027 \times 10^{-3} \: Ampere[/tex]
Learn more : https://brainly.com/question/13511183