Respuesta :

Answer:

The expression is equivalent to [tex]10^{\frac{3}{8}x}[/tex]  

Step-by-step explanation:

Given : Expression Root 10 Superscript three-fourths x.

To find : Which is equivalent to expression ?

Solution :

The expression Root 10 Superscript three-fourths x is written as

Root 10 - [tex]\sqrt{10}[/tex]

Three-fourths x - [tex]\frac{3}{4}x[/tex]

So, Root 10 Superscript three-fourths x is [tex](\sqrt{10})^{\frac{3}{4}x}[/tex]

Let  [tex]y=(\sqrt{10})^{\frac{3}{4}x}[/tex]

[tex]y=(10^{\frac{1}{2}})^{\frac{3}{4}x}[/tex]

[tex]y=10^{\frac{3}{8}x}[/tex]

The expression is equivalent to [tex]10^{\frac{3}{8}x}[/tex]

Answer:

[tex]10^{\frac{3}{8}x}[/tex]

Step-by-step explanation:

The given expression is

[tex](\sqrt{10})^{\frac{3}{4}x}[/tex]

We need to find the expression which is equivalent to the given expression.

Using the property of radical expression the given expression can be rewritten as

[tex](10^{\frac{1}{2})^{\frac{3}{4}x}[/tex]          [tex][\because \sqrt{x}=x^{\frac{1}{2}}][/tex]

Using the property of exponent, we get

[tex]10^{\frac{1}{2}\times \frac{3}{4}x}[/tex]          [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]10^{\frac{3}{8}x}[/tex]

Therefore, the expression [tex]10^{\frac{3}{8}x}[/tex] is equivalent to the given expression.

Q&A Education