A 380-L tank contains steam, initially at 400C, 3 bar. A valve is opened, and steam flows out of the tank at a constant mass flow rate of 0.005 kg/s. During steam removal, a heater maintains the temperature within the tank constant. Determine the time, in sec, at which 75% of the initial mass remains in the tank. Also, determine the specific volume, in m^3 /kg, and pressure, in bar, in the tank at that time.

Respuesta :

Our values,

[tex]V=380L = 380*10^{-3}m^3/s[/tex]

[tex]\dot{m} = 0.005kg/s[/tex]

[tex]P_1 = 3bar[/tex]

[tex]T_1=T_2=400\°c[/tex]

[tex]m_f=75\%[/tex]

We can know apply the properties of the superheated water,

[tex]P_1 = 3Bar[/tex]

[tex]T_1=T_2=400\°c[/tex]

So we have that

[tex]v_1=1.032m^3/kg[/tex]

And we can find the initial mass of the tank,

[tex]m_1 = \frac{V}{v}[/tex]

[tex]m_1 = \frac{380*10^{-3}}{1.032}[/tex]

[tex]m_1 = 0.368kg[/tex]

How the final mass is 75%, then

[tex]m_2 = 0.75*0.368 = 0.276 kg[/tex]

The time required is given by the change in the mass vs the rate of the mass, so

[tex]t= \frac{0.368-0.279}{0.005}[/tex]

[tex]t=17.8s[/tex]

Finally we have the specific volume in the tank, thatis

[tex]v_2 = \frac{V}{m_2} = \frac{380*10^{-3}}{0.276}[/tex]

[tex]v_2 = 1.3768m^3/kg[/tex]

From the properties of water in the table we can find the [tex]P_2[/tex], that is,

At [tex]v_2 = 1.378m^3/kg[/tex] and [tex]T_1 = T_2 =400\°c[/tex]

[tex]P_2 = 2.8bar[/tex]

Explanation:

The given data is as follows.

   Tank volume (V) = 380 L = 0.38 [tex]m^{3}[/tex]

   Initial pressure ([tex]P_{i}[/tex]) = 3 bar

  Temperature (t) = [tex]400^{o}C[/tex]

 Outlet mass flow rate ([tex]m_{o)}[/tex]) = 0.005 kg/s

  Final mass ([tex]m_{f}[/tex]) = [tex]0.75m_{i}[/tex]  

First, we will calculate the initial mass as follows.

          [tex]m_{i} = \frac{V}{v_{i}}[/tex]

                       = [tex]\frac{0.38}{1.032}[/tex]

                       = 0.368 kg

and,     [tex]m_{f} = m_{i} = 0.75 \times 0.368 = 0.276 kg/s[/tex]

also,      [tex]\Delta m = 0.25m_{i} = 0.25 \times 0.368 = 0.092[/tex]

As,      [tex]\Delta m = m_{o} \Delta t[/tex]

        [tex]\Delta t = \frac{\Delta m}{m_{o}}[/tex]

                      = [tex]\frac{0.092}{0.005}[/tex]

                      = 18.4 s

         [tex]v_{f} = \frac{V}{v_{f}}[/tex]

                   = [tex]\frac{0.38}{0.276}[/tex]

                   = 1.376 [tex]m^{3}/kg[/tex]

According to the table A-4, value of pressure at [tex]v_{f} = 1.376 m^{3}/kg[/tex] and T = [tex]400^{o}C[/tex] is 2.5 bar.

Therefore, value of [tex]-\Delta t[/tex] is 18.4 s, [tex]-v_{f}[/tex] is 1.376 [tex]m^{3}/kg[/tex] and [tex]-P_{f}[/tex] is 2.5 bar.

Q&A Education