Respuesta :

Answer:

[tex]a=0\\a=2\\a=-2[/tex]

Step-by-step explanation:

We have [tex]\frac{3}{a+2}+\frac{2}{a} =\frac{4a-4}{a^2-4}[/tex]

We are going to analyze  both sides of the equation separately.

Part a: [tex]\frac{3}{a+2}+\frac{2}{a}[/tex]

Applying common denominator:

[tex]\frac{3}{a+2}+\frac{2}{a}=\frac{3a+2(a+2)}{a(a+2)}[/tex]

[tex]\frac{3a+2(a+2)}{a(a+2)}=\frac{3a+2a+4}{a(a+2)}=\frac{5a+4}{a(a+2)}[/tex]

Part b:

[tex]\frac{4a-4}{a^2-4}[/tex]

In the numerator we can apply common factor 4. And in the denominator we can apply difference of squares.

Remember: Difference of squares: [tex](a^2-b^2)=(a+b)(a-b)[/tex]

[tex]\frac{4a-4}{a^2-4}=\frac{4(a-1)}{a^2-2^2}=\frac{4(a-1)}{(a+2)(a-2)}[/tex]

Then,

[tex]\frac{3}{a+2}+\frac{2}{a} =\frac{4a-4}{a^2-4}\\\\\frac{5a+4}{a(a+2)}=\frac{4(a-1)}{(a+2)(a-2)}[/tex]

An extraneous solution is not a valid solution for a problem. We know that the denominator can't be zero.

The denominator of the first side of the equation is:

[tex]a(a+2)[/tex] and we have to see for which values of [tex]a[/tex] the denominator is zero:

[tex]a(a+2)=0[/tex] ⇒ [tex]a=0[/tex] and [tex]a=-2[/tex]

The denominator of the second side of the equation is:

[tex](a+2)(a-2)[/tex]

And we have to see for which values of [tex]a[/tex] the expression is zero,

[tex](a+2)(a-2)=0[/tex] ⇒ [tex]a=-2[/tex] and [tex]a=2[/tex]

Then the extraneous solutions of the equation are:

[tex]a=0\\a=2\\a=-2[/tex]

Because those are the values of [tex]a[/tex]  ​​that make the denominator zero.

Answer:

Solutions : x=4,-2

Extraneous  solution : x=-2.

Step-by-step explanation:

The given equation is

[tex]\dfrac{3}{a+2}+\dfrac{2}{a}=\dfrac{4a-4}{a^2-4}[/tex]

Taking LCM we get

[tex]\dfrac{3a+2(a+2)}{(a+2)a}=\dfrac{4a-4}{(a-2)(a+2)}[/tex]         [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

[tex]\dfrac{3a+2a+4}{(a+2)a}=\dfrac{4a-4}{(a-2)(a+2)}[/tex]

Cancel out common factors from the denominators.

[tex]\dfrac{5a+4}{a}=\dfrac{4a-4}{a-2}[/tex]

On cross multiplication we get

[tex](5a+4)(a-2)=(4a-4)a[/tex]

[tex]5a^2-10a+4a-8=4a^2-4a[/tex]

[tex]5a^2-6a-8-4a^2+4a=0[/tex]

[tex]a^2-2a-8=0[/tex]

Splitting the middle term we get

[tex]a^2-4a+2a-8=0[/tex]

[tex]a(a-4)+2(a-4)=0[/tex]

[tex](a+2)(a-4)=0[/tex]

Using zero product property we get

[tex]a=-2,a=4[/tex]

Extraneous solutions: From the solutions of an equation, the invalid solutions are known as extraneous solutions.

For a=-2 right hand side of the given equation is not defined because the denominator become 0.

Therefore, -2 is an extraneous solution.

Q&A Education