Answer:[tex]21.33^{\circ}[/tex]
Explanation:
Given
velocity of driver [tex]v_1[/tex]=25 m/s w.r.t ground towards north
driver observes that rain is making an angle of [tex]38^{\circ}[/tex] with vertical
While returning [tex]v_2[/tex]=25 m/s w.r.t. ground towards south
suppose [tex]u_1[/tex]=velocity of rain drop relative car while car is going towards north
[tex] u_2[/tex]=velocity of rain drop relative car while car is going towards south
z=vector sum of [tex]u_1 & v_1[/tex]
Now from graph
[tex]\tan 38=\frac{v_1+v_2}{u_2}[/tex]
[tex]u_2=\frac{25+25}{\tan 38}=64 m/s[/tex]
[tex]z=\vec{u_2}+\vec{v_2}[/tex]
therefore magnitude of z is given by
[tex]|z|=\sqrt{u_2^2+v_2^2}[/tex]
[tex]|z|=\sqrt{64^2+25^2}[/tex]
[tex]|z|=68.70 m/s[/tex]
[tex]\tan A=\frac{v_2}{u_2}[/tex]
[tex]\tan A=\frac{25}{64}=0.3906[/tex]
[tex]A=21.33^{\circ}[/tex]
Thus rain drops make an angle of [tex]21.33^{\circ}[/tex] w.r.t to ground