Respuesta :

Answer:

The perimeter of triangle ABC  is 15.8 units

Step-by-step explanation:

we know that

The perimeter of a triangle is equal to the sum of its three length sides

[tex]P=AB+BC+AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have the coordinates

[tex]A(5,-1),B(-1,1),C(0,-3)[/tex]

step 1

Find the distance AB

we have

[tex]A(5,-1),B(-1,1)[/tex]

substitute in the formula

[tex]d=\sqrt{(1+1)^{2}+(-1-5)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(-6)^{2}}[/tex]

[tex]d_A_B=\sqrt{40}\ units[/tex]

[tex]d_A_B=6.3\ units[/tex]

step 2

Find the distance BC

we have

[tex]B(-1,1),C(0,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-1)^{2}+(0+1)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(1)^{2}}[/tex]

[tex]d_B_C=\sqrt{17}\ units[/tex]

[tex]d_B_C=4.1\ units[/tex]

step 3

Find the distance AC

we have

[tex]A(5,-1),C(0,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3+1)^{2}+(0-5)^{2}}[/tex]

[tex]d=\sqrt{(-2)^{2}+(-5)^{2}}[/tex]

[tex]d_A_C=\sqrt{29}\ units[/tex]

[tex]d_A_C=5.4\ units[/tex]

step 4

Find the perimeter

[tex]P=AB+BC+AC[/tex]

substitute the values

[tex]P=6.3+4.1+5.4[/tex]

[tex]P=15.8\ units[/tex]

Q&A Education