What is the length of AC¯¯¯¯¯ ?
Enter your answer in the box.
units___
Answer:
AC = 6
Step-by-step explanation:
y is the dimension of the horizontal segment (see the attached image).
The hypotenuses are the same dimension, so:
(x+4)^2=(x/2)^2+y^2
(3x-8)^2=(x/2)^2+y^2
So,
(x+4)^2 = (3x-8)^2
x+4 = 3x-8
x-3x = -8-4
-2x = -12
x = 6
And x is the dimension of the segment AC.
Answer : The length AC is, 6
Step-by-step explanation :
The given triangle is an isosceles triangle in which the angles opposite to equal sides are always equal.
Thus, [tex]\angle A=\angle C[/tex]
[tex](x+4)=(3x-8)[/tex]
[tex]x+4=3x-8[/tex]
[tex]3x-x=8+4[/tex]
[tex]2x=12[/tex]
[tex]x=6[/tex]
The length AC = x = 6
The length AB = (x + 4) = 6 + 4 = 10
The length AB = (3x - 8) = 3(6) - 8 = 10
Thus, the length AC is, 6