Answer:
[tex]\lambda=3.7\times 10^{-63}\ m[/tex]
Explanation:
The expression for the deBroglie wavelength is:
[tex]\lambda=\frac {h}{m\times v}[/tex]
Where,
[tex]\lambda[/tex] is the deBroglie wavelength
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
m is the mass of the matter associated with Earth
Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]
v is the speed of the matter associated with Earth.
Velocity of Earth = [tex]30000\ m/s[/tex]
Applying in the equation as:
[tex]\lambda=\frac {h}{m\times v}[/tex]
[tex]\lambda=\frac{6.626\times 10^{-34}}{5.972\times 10^{24}\times 30000}\ m[/tex]
[tex]\lambda==\frac{10^{-34}\times \:6.626}{10^{24}\times \:179160}\ m[/tex]
[tex]\lambda==\frac{6.626}{10^{58}\times \:179160}\ m[/tex]
[tex]\lambda=3.7\times 10^{-63}\ m[/tex]