Respuesta :

Answer:

-4 and 9

Step-by-step explanation:

we have

[tex]x^{2} -36=5x[/tex]

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -36=5x[/tex]

[tex]x^{2}-5x-36=0[/tex]

so

[tex]a=1\\b=-5\\c=-36[/tex]

substitute in the formula

[tex]x=\frac{-(-5)(+/-)\sqrt{-5^{2}-4(1)(-36)}} {2(1)}[/tex]

[tex]x=\frac{5(+/-)\sqrt{169}} {2}[/tex]

[tex]x=\frac{5(+/-)13} {2}[/tex]

[tex]x=\frac{5(+)13} {2}=9[/tex]

[tex]x=\frac{5(-)13} {2}=-4[/tex]

therefore

The equation is true for -4 and 9

Q&A Education