What series of transformations would carry parallelogram ABCD onto itself?

(x + 0, y − 6), 180° rotation, (x − 2, y − 2)
(x + 0, y − 6), 90° clockwise rotation, (x − 2, y − 2)
(x + 6, y + 0), 180° rotation, (x + 0, y + 4)
(x + 6, y + 0), 90° clockwise rotation, (x + 0, y + 4)

What series of transformations would carry parallelogram ABCD onto itself x 0 y 6 180 rotation x 2 y 2 x 0 y 6 90 clockwise rotation x 2 y 2 x 6 y 0 180 rotatio class=

Respuesta :

Answer:  (x + 0, y − 6), 180° rotation, (x − 2, y − 2)

The parallelogram ABCD can be transformed onto itself by composite

transformations.

The series of transformation that would carry parallelogram ABCD onto

itself are; [tex]\underline{ \mathbf{(x + 6, \, y + 0), 180^{\circ} \, rotation, \, (x + 0, \, y + 4)}}[/tex]

Reasons:

The coordinates of the vertex of the parallelogram are;

A(-5, 1), B(-4, 3), C(-1, 3), and D(-2, 1)

  • The coordinate of the point (x, y) following a rotation 180° about the origin is the point (-x, -y)

Following a rotation of the parallelogram ABCD about the origin we get;

A'(5, -1), B'(4, -3), C'(1, -3), and D'(2, -1)

Given that the parallelogram is symmetrical following  rotation of 180°, we have;

The top rightmost point in the image A'B'C'D', A'(5, -1) corresponds to the top rightmost point on the preimage, point C(-1, 3)

Similarly, we have;

Point B'(4, -3), corresponds to point D(-2, 1)

Point D'(2, -1), corresponds to point B(-4, 3)

The difference in the corresponding points are;

Difference in x-values = 4 - (-2) = 6

Difference in y-values = -3 - 1 = -4

  • Which gives; T₍₆, ₋₄₎, which are magnitudes similar to the third option

Therefore; by (x + 6, y + 0), 180° rotation, (x + 0, y + 4), we have;

  • Adding 6 to the x-values before rotation gives;

A''(-5 + 6, 1), B''(-4 + 6, 3), C''(-1 + 6, 3), and D''(-2 + 6, 1)

A''(1, 1), B''(2, 3), C''(5, 3), and D''(4, 1)

  • Rotating 180° about the origin gives;

A'''(-1, -1), B'''(-2, -3), C'''(-5, -3), and D'''(-4, -1)

  • Adding 4 to the y-values gives;

A''''(-1, -1 + 4), B''''(-2, -3 + 4), C''''(-5, -3 + 4), and D''''(-4, -1 + 4)

A''''(-1, 3), B''''(-2, 1), C''''(-5, 1), and D''''(-4, 3), which are the coordinates of the image;

A''''(-1, 3) ⇔ C(-1, 3)

B''''(-2, 1) ⇔ D(-2, 1)

C''''(-5, 1) ⇔ A(-5, 1)

D''''(-4, 3) ⇔ B(-4, 3)

Therefore, the series of transformation that would carry parallelogram ABCD onto itself are; [tex]\underline{ \mathbf{(x + 6, \, y + 0), 180^{\circ} \, rotation, \, (x + 0, \, y + 4)}}[/tex]

Learn more here:

https://brainly.com/question/13963053

Q&A Education