Respuesta :

Answer:

x is  [tex]\frac{1\ + \sqrt{3} i}{2}[/tex]   AND

       [tex]\frac{1\ - \sqrt{3} i}{2}[/tex]

y = [tex]\frac{3\ + \sqrt{3} i}{2}[/tex]      And

      [tex]\frac{3\ - \sqrt{3} i}{2}[/tex]

Step-by-step explanation:

Given two equations are :

y = x² + 2         And

y = x + 1

So, the equation can be written as

x² + 2  =  x + 1

Or, x² - x + ( 2 - 1) = 0

Or, x² - x + 1 = 0

This is in the form of quadratic equation

So,   Roots of equation x be :

     x = [tex]\frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}[/tex]

Or, x = [tex]\frac{1\pm \sqrt{-1^{2}-4\times 1\times 1}}{2\times 1}[/tex]

Or , x = [tex]\frac{1\pm \sqrt{-3}}{2}[/tex]

Hence the two value of x is  [tex]\frac{1\ + \sqrt{3} i}{2}[/tex]   AND

                                               [tex]\frac{1\ - \sqrt{3} i}{2}[/tex]

So , y = [tex]\frac{3\ + \sqrt{3} i}{2}[/tex]      And

              [tex]\frac{3\ - \sqrt{3} i}{2}[/tex]

Q&A Education