Rewrite the expression with rational exponents as a radical expression by extending the properties of i tiger exponents
Answer:
[tex]\sqrt[6]{y}[/tex]
Step-by-step explanation:
The expression is
[tex]\frac{y^{\frac{1}{3} } }{y^{\frac{1}{6}}}[/tex]
Applying rule of exponents, [tex]\frac{x^{m}}{x^{n}}=x^{m-n}[/tex]
[tex]\frac{y^{\frac{1}{3} } }{y^{\frac{1}{6}}}=y^{\frac{1}{3}-\frac{1}{6}}=y^{\frac{2-1}{6}}=y^{\frac{1}{6}}[/tex]
Now,we know that, [tex]x^{\frac{1}{n}}=\sqrt[n]{x}[/tex]
∴ [tex]y^{\frac{1}{6}}=\sqrt[6]{y}[/tex]
So, the last option is correct.