Answer:
V_2= 595.7054 m/s
Explanation:
The energy balance equation
E_in - E= ΔE_system
E_in = E_out
therefore,
[tex]m(h_1+\frac{V_1^2}{2})= Q_{out}+m(h_2+\frac{V^2_2}{2})[/tex]
Exit velocity
[tex]V_2= [V_1^2+2(h_1-h_2)]^{0.5} = [V_1^2+2C_p(T_1-T_2)]^{0.5}[/tex]
noting C_p=0.253
replace the values of the variables to find V_2
[tex]V_2=[80^2+2\times0.253(672.5-645)R\times25037]^{0.5}[/tex]
V_2= 595.7054 m/s