Answer:
Explanation:
Given
mass of child=22 kg
weight of child [tex]=mg=22\times 9.8=215.6 N[/tex]
[tex]N=40 rev/min[/tex]
[tex]\omega _1=\frac{2\pi 40}{60}=4.189 rad/s[/tex]
distance from, center [tex]r_1=1.25 m[/tex]
Centripetal Force she exerts to stay on
[tex]F_1=m(\omega _1)^2\times r_1[/tex]
[tex]F_1=22\times (4.189)^2\times 1.25[/tex]
[tex]F_1=482.56 N[/tex]
[tex]F_1 is 2.23[/tex] times of child weight
Now if
[tex]N_2=3 rev/min[/tex]
[tex]\omega _2=0.3142 rad/s[/tex]
[tex]r_2=8 m[/tex]
[tex]F_2=m(\omega _2)^2\times r_2[/tex]
[tex]F_2=22\times (0.3142)^2\times 8=17.37 N[/tex]
[tex]F_2\ is\ 0.08[/tex] times of child weight