Answer:
[tex]m_{final}=200lb[/tex]
Explanation:
We start with the balance equation for this problem, that is,
[tex]\frac{m_{cv}}{dt} = \sum\dot{m_i}-\sum\dot{m_e}\\\frac{m_{cv}}{dt} = \dot{m_1}+\dot{m_2}-\dot{m_3}\\dm_{cv}=(\dot{m_1}+\dot{m_2}-\dot{m_3})dt[/tex]
We integrathe this expresión to have the initial and final mass.
[tex]\int\limit^{final}_{initial} = \int\limit^{t=1hr}_{t=0}(\dot{m_1}+\dot{m_2}-\dot{m_3})dt[/tex]
[tex]m_{final}=m_{initial}+(\dot{m_1}+\dot{m_2}-\dot_{m_3})t[/tex]
Here we can note remark that
[tex]\dot{m_1},\dot{m_2}=[/tex] Mass flow rate of hot water and cold water
[tex]\dot{m_3} =[/tex] Mass flow rate of liquit water
Substituting the values
[tex]m_{initial}=2000lb\\\dot{m_1}=0.8lb/s\\\dot{m_2}=1.2lb/s\\\dot{m_3}=2.5lb/s\\t=1hr[/tex]
[tex]m_{final}=m_{initial}+(\dot{m_1}+\dot{m_2}-\dot{m_3})\\m_{final}=2000+(0.8+1.2-2.5)(1hr*3600s/1hr)\\m_{final}=200lb\\[/tex]