Answer:
The difference of the terms is [tex]x +\frac{21}{2}[/tex]
Step-by-step explanation:
Here, the given expression is [tex]\frac{3}{4} (3x+6) - \frac{1}{4}(5x -24)[/tex]
Solving the above terms,
[tex]\frac{3}{4} (3x) +\frac{3}{4} (6) - \frac{1}{4}(5x) +\frac{1}{4}(24) = \frac{9x}{4} + \frac{9}{2} - \frac{5x}{4} + 6[/tex]
or, [tex]\frac{9x}{4} - \frac{5x}{4} + \frac{9}{2} + 6 \\\frac{9x - 5x}{4} + \frac{18 + 24}{4} \\\frac{4x}{4} +\frac{21}{2}[/tex]
= [tex]x +\frac{21}{2}[/tex]
So, the difference of the terms is [tex]x +\frac{21}{2}[/tex]