The solubility of N2 in blood at 37°C and a partial pressure of 0.80 atm is 5.6 ✕ 10−4 mol·L−1. A deep-sea diver breathes compressed air with a partial pressure of N2 equal to 4.1 atm. Assume that the total volume of blood in this diver's body is 6.2 L. Calculate the amount of N2 gas released (in liters) when the diver returns to the surface of water, where the partial pressure of N2 is 0.80 atm. (2 sig fig)

Respuesta :

Answer:

The amount of N₂ gas released is 0.4546 l.

Explanation:

The solubility of gas is proportional to the partial pressure of the gas. Thus:

[tex]\frac{c_1}{P_1}= \frac{c_2}{P_2}\\c_2=\frac{c_1 \times P_2}{P_1}\\c_2=\frac{5.6 \times10^{-4} \frac{mol}{l}  \times 4.1 atm}{0.8 atm}\\c_2= 2.87\times 10^{-3} \frac{mol}{l}[/tex]

The nitrogen concentration in the surfacing divers blood decreases by:

[tex]\Delta c=c_2 - c_1= 2.87\times 10^{-3} \frac{mol}{l} - 5.6 \times10^{-4} \frac{mol}{l}= 2.31\times10^{-3} \frac{mol}{l}[/tex]

The amount of nitrogen released is given by the multiplication of Δc and volume of blood in human body:

[tex]n= \Delta c \times V_{blood}=2.31\times10^{-3} \frac{mol}{l} \times 6.2l=0.0143 mol[/tex]

Using ideal gas law we can calculate the volume at 0.8 atm and 37°C (310.15K):

[tex]PV=nRT\\0.8 atm \times V=0.0143 mol \times 0.082\frac{l . atm}{mol.K} \times 310.15 K\\V=\frac{0.0143 mol \times 0.082\frac{l . atm}{mol.K} \times 310.15 K}{0.8 atm}\\V=0.4546 l[/tex]

Q&A Education