Rewrite the statement in mathematical notation. (Let y be the distance from the top of the ladder to the floor, x be the distance from the base of the ladder to the wall, and t be time.) A ladder is sliding down a wall so that the distance between the top of the ladder and the floor is decreasing at a rate of 6 feet per second. How fast is the base of the ladder receding from the wall?

Respuesta :

Answer:

[tex]\frac{dy}{dt}=\frac{6y}{x}\text{ ft per sec}[/tex]

Step-by-step explanation:

Let L be the length of the ladder,

Given,

x = the distance from the base of the ladder to the wall, and t be time.

y = distance from the base of the ladder to the wall,

So, by the Pythagoras theorem,

[tex]L^2 = y^2 + x^2[/tex]

[tex]\implies L = \sqrt{y^2 + x^2}[/tex],

Differentiating with respect to time (t),

[tex]\frac{dL}{dt}=\frac{d}{dt}(\sqrt{x^2 + y^2})[/tex]

[tex]=\frac{1}{2\sqrt{x^2 + y^2}}\frac{d}{dt}(x^2 + y^2)[/tex]

[tex]=\frac{1}{2\sqrt{x^2 + y^2}}(2x\frac{dx}{dt}+2y\frac{dy}{dt})[/tex]

[tex]=\frac{1}{\sqrt{x^2 +y^2}}(x\frac{dx}{dt}+y\frac{dy}{dt})[/tex]

Here,

[tex]\frac{dy}{dt}=-6\text{ ft per sec}[/tex]

Also, [tex]\frac{dL}{dt} = 0[/tex]           ( Ladder length = constant ),

[tex]\implies \frac{1}{\sqrt{x^2 +y^2}}(x(-6)+y\frac{dy}{dt})=0[/tex]

[tex]-6x + y\frac{dy}{dt}=0[/tex]

[tex]y\frac{dy}{dt}=6x[/tex]

[tex]\implies \frac{dy}{dt}=\frac{6y}{x}\text{ ft per sec}[/tex]

Which is the required notation.

Q&A Education