Respuesta :
Answer:
a) 0.923
b) 0.957
c) 0.88
d) 0.077
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 40
Standard Deviation, σ = 14
We are given that the distribution of number of milligrams of porphyritic per deciliter of blood is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(xis less than 60)
P(x < 60)
[tex]P( x < 60) = P( z < \displaystyle\frac{60 - 40}{14}) = P(z < 1.4285)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 60 ) =0.923 = 92.3\%[/tex]
b) P(x is greater than 16)
[tex]P(x > 16) = P(z > \displaystyle\frac{16-40}{14}) = P(z > -1.7142)\\\\P( z > -1.7142) = 1 - P(z \leq -1.7142)[/tex]
Calculating the value from the standard normal table we have,
[tex]1 - 0.043 = 0.957 = 95.7\%\\P( x > 16) = 95.7\%[/tex]
c)P(x is between 16 and 60)
[tex]P(16 \leq x \leq 60) = P(\displaystyle\frac{16 - 40}{14} \leq z \leq \displaystyle\frac{60-40}{14}) = P(-1.7142 \leq z \leq 1.4285)\\\\= P(z \leq 1.4285) - P(z < -1.7142)\\= 0.923 - 0.043= 0.88 = 88%[/tex]
[tex]P(16 \leq x \leq 60) = 88\%[/tex]
d) P(x is more than 60)
P(x > 60) = 1 - P(x < 60) = 1 - 0.923 = 0.077