Respuesta :

[tex]\boxed{f(x)=-\frac{3}{2}x^2+3x+\frac{9}{2}}[/tex]

Explanation:

The Standard Form of the equation of a parabola is given by the form:

[tex]y=ax^2+bx+c[/tex]

As y is a function of x, then we can write:

[tex]y=f(x)=ax^2+bx+c \\ \\ a, \ b, c \ Real \ Coefficients[/tex]

Also, we can write [tex]f(x)[/tex] in factored form as:

[tex]f(x)=a(x-x_{1})(x-(x_{2}) \\ \\ x_{1} \ and \ x_{2} \ Are \ the \ roots[/tex]

In this case:

[tex]x_{1}=-1 \\ \\ x_{2}=3[/tex]

So:

[tex]f(x)=a(x-(-1))(x-3) \\ \\ f(x)=a(x+1)(x-3)[/tex]

We also know that the parabola passes through the point (1,6):

[tex]f(1)=6=a(1+1)(1-3) \\ \\ Isolating \ a: \\ \\ 6=a(2)(-2) \\ \\ 6=a(-4) \\ \\ a=-\frac{6}{4} \\ \\ a=-\frac{3}{2}[/tex]

Finally, the equation of the parabola is:

[tex]f(x)=-\frac{3}{2}(x+1)(x-3)[/tex]

Or applying Distributive Property:

[tex]f(x)=-\frac{3}{2}\left(x^2-2x-3\right) \\ \\ \boxed{f(x)=-\frac{3}{2}x^2+3x+\frac{9}{2}}[/tex]

Learn more:

Piecewise-defined function: https://brainly.com/question/12169258

#LearnWithBrainly

Q&A Education