Respuesta :
Answer:
v=3.649 m/s
Explanation:
Lets start with the force of gravity on the elevator.
[tex]Fg=2000 kg* 9.8\frac{m}{s^{2} } Â \\Fg= 19600N[/tex]
But the friction clamp opposes this with a force of 17000 N
So the Net force on the elevator is
[tex]Ft=19600 - 17000 \\Ft= 2600 N[/tex]
Kinetic Energy
[tex]K=\frac{1}{2}*m*v^{2}\\K=\frac{1}{2}*2000kg*(4\frac{m}{s}) ^{2}\\K=16000J[/tex]
The motion will be describe
original Kinetic energy + work done = final kinetic energy + spring energy
[tex]Ek+Ft=Ekf+Fk\\16000J+2600J=\frac{1}{2}*m*v^{2}+\frac{1}{2}*k*x^{2} \\18600J=\frac{1}{2}*2000kg*v^{2}+ \frac{1}{2}*10.6x10^{3}\frac{N}{m} *1m^{2}\\18600-5300=\frac{1}{2}*2000kg*v^{2}\\v^{2}=\frac{13300J}{1000kg}\\v^{2}=13.3\\v=\sqrt{13.3}=3.64 \frac{m}{s}[/tex]