Respuesta :
Answer:
[tex]V_2 = 45.44m/s[/tex]
Explanation:
We have to many data in different system, so we need transform everything to SI, that is
[tex]P_1 = 2.65 Psi = 18.271 kPa\\T_1= 389\°R = 216 K\\V_1 = 869ft/s = 264m/s\\T_2 = 450\°R = 250K[/tex]
When we have all this values in SI apply a Energy Balance Equation,
[tex]\dot{Q}_{cv}-\dot{W}_{cv}+\dot{m}[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0[/tex]
Solving for V_2
[tex]V_2 = \sqrt{V_1^2+2(h_1-h_2)}[/tex]
From the table of gas properties we calculate for [tex]T_1 = 216K[/tex] and [tex]T_2 = 250K[/tex]
[tex]h_1 = 209.97+(219.97-209.97)(\frac{216-210}{220-210})[/tex]
[tex]h_1 = 215.97kJ/kg[/tex]
For T_2;
[tex]h_2 = 250.05kJ/kg[/tex]
Substituting in equation for V_2
[tex]V_2 = \sqrt{V_1^2+2(h_1-h_2)}[/tex]
[tex]V_2 = \sqrt{265^2+2(215.97-250.05)*10^3}\\V_2 = 45.44m/s[/tex]