Mileage tests are conducted for a particular model of automobile. If a 98% confidence interval with a margin of error of 1 mile per gallon is desired, how many automobiles should be used in the test? Assume that preliminary mileage tests indicate the standard deviation is 2.6 miles per gallon.

Respuesta :

Answer: 37

Step-by-step explanation:

As per given description in the question, we have

Population standard deviation : [tex]\sigma=2.6\text{ miles per gallon}[/tex]

Critical value for 98% confidence interval = [tex]z_{\alpha/2}=2.33[/tex]

Margin of error : E= 1 mile per gallon

Formula we use to find the sample size :

[tex]n=(\dfrac{z_{\alpha/2}\cdot \sigma}{E})^2[/tex]

i.e. [tex]n=(\dfrac{(2.33)\cdot(2.6)}{1})^2[/tex]

[tex]\Rightarrow\ n=36.699364\approx37[/tex]

Therefore , the number of automobiles should be used in the test =37

Q&A Education