contestada

The equation of line AB is y = 5x + 1. Write an equation of a line parallel to line AB in slope-intercept form that contains point (4, 5).

y = 5x − 15
y = 5x + 15
y = 1 over 5x + 21 over 5
y = 1 over 5x − 29 over 5

Respuesta :

For this case we have that by definition, the equation of a line of the slope-intersection form is given by:

[tex]y = mx + b[/tex]

Where:

m: It's the slope

b: It is the cut-off point with the y axis

On the other hand, we have that if two lines are parallel then their slopes are equal.

Given the line AB: [tex]y = 5x + 1,[/tex] the slope is [tex]m_ {1} = 5[/tex]

Therefore, a parallel line will have slope [tex]m_ {2} = 5.[/tex]

Thus, the equation is of the form is: [tex]y = 5x + b[/tex]

We substitute point[tex](4,5)[/tex]and find "b":

[tex]5 = 5 (4) + b\\5 = 20 + b\\5-20 = b\\b = -15[/tex]

Finally, a line parallel to line AB is: [tex]y = 5x-15[/tex]

Answer:

[tex]y = 5x-15[/tex]

Q&A Education