Respuesta :

Answer:

[tex]f(x)=2x^{3}+24x^{2}+82x+60[/tex]

Step-by-step explanation:

we know that

The roots of the polynomial are the values of x when the value of the polynomial f(x) is equal to zero

The roots of the polynomial function are

x=-6 -----> (x+6)=0

x=-5 -----> (x+5)=0

x=-1 -----> (x+1)=0

The equation of the cubic polynomial is

[tex]f(x)=a(x+6)(x+5)(x+1)[/tex]

where

a is the leading coefficient

Remember that

f(0)=60

That means ------> For x=0 the value of f(x) is equal to 60

substitute the value of x and the value of y in the function and solve for a

[tex]60=a(0+6)(0+5)(0+1)[/tex]

[tex]60=a(6)(5)(1)[/tex]

[tex]60=30a[/tex]

[tex]a=2[/tex]

so

[tex]f(x)=2(x+6)(x+5)(x+1)[/tex]

Applying the distributive property

Convert to expanded form                  

[tex]f(x)=2(x+6)(x+5)(x+1)\\\\f(x)=2(x+6)(x^{2}+x+5x+5)\\\\f(x)=2(x+6)(x^{2}+6x+5)\\\\f(x)=2(x^{3}+6x^{2}+5x+6x^{2}+36x+30)\\\\f(x)=2x^{3}+24x^{2}+82x+60[/tex]

Q&A Education