Respuesta :
Answer:
a) Terrance's speed- 12 [tex]\frac {{textrm{ miles}}}{{textrm{ hours}}}[/tex]
Jesse's speed -8 [tex]\frac{{textrm{ miles}}}{{textrm{ hour}}}[/tex]
b) Teerance ;- 4 hr 10 min ; Jesse ;- 6 hr 15 min
c) Sandra's speed :- [tex] 10 \dfrac{2}{3} \frac{{textrm{ mile}}}{{textrm{ hour}}}[/tex]
Step-by-step explanation:
Terrance runs
in [tex] \frac {1}{2} [/tex] an hour 6 miles
So in 1 hour he / she runs [tex] (6 \times 2) [/tex] miles
= 12 miles.
So Terrance's speed is 12 [tex] \frac {{textrm{ miles}}}{{textrm{ hours}}}[/tex] ---(1)
Jesse's runs
In 15 minutes 2 miles
So, In 1 minute [tex] \frac {2}{15} [/tex] miles
So, in 60 minutes [tex] \frac {2}{15} \times 60[/tex] miles
= 8 miles
So, Jesse's speed is 8 [tex]\frac{{textrm{ miles}}}{{textrm{ hour}}}[/tex] ----------(2)
Terrance runs,
12 miles in 1 hour
so, 1 mile in [tex] \frac {1}{12} [/tex] hour
so, 50 miles in [tex] \frac {50}{12} [/tex] hour
= [tex] 4 \dfrac{1}{6} [/tex] hour
=4 hour [tex] \frac {60}{6} [/tex] minutes
= 4 hour 10 minutes.
Jesse runs,
8 miles in 1 hour
so, 50 miles in [tex] \frac {50}{8} [/tex] hour
= [tex] 6 \dfrac{1}{4} [/tex] hour
= 6 hour [tex] \frac {60}{4} [/tex] minutes
= 6 hour 15 minutes
Sandra runs,
in 45 minutes 8 miles
so, in 1 minute [tex] \frac {8}{45} [/tex] mile
so, in 60 minutes [tex] \frac {8}{45} \times 60 [/tex] miles
= [tex] 10 \dfrac{2}{3} [/tex] miles
So Sandra's speed is , [tex] 10 \dfrac{2}{3} \frac{{textrm{ mile}}}{{textrm{ hour}}}[/tex]---------------- (3)