Answer:
The mass of the silver block is 95.52 grams.
Explanation:
Heat lost by silver will be equal to heat gained by the water
[tex]-Q_1=Q_2[/tex]
Mass of silver= [tex]m_1[/tex]
Specific heat capacity of silver = [tex]c_1=0.235 J/g^oC [/tex]
Initial temperature of the silver = [tex]T_1=58.4^oC[/tex]
Final temperature of a silver = [tex]T_2=T=26.7^oC[/tex]=
[tex]Q_1=m_1c_1\times (T-T_1)[/tex]
Mass of water= [tex]m_1=100.0 g[/tex]
Specific heat capacity of water= [tex]c_2=4.186 J/g^oC [/tex]
Initial temperature of the water = [tex]T_3=25^oC[/tex]
Final temperature of water = [tex]T_3=T=26.7^oC[/tex]
[tex]Q_2=m_2c_2\times (T-T_3)[/tex]
[tex]-Q_1=Q_2[/tex]
[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]
[tex]-(m_1\times 0.235 J/g^oC\times (26.7^oC-58.4^oC))=100.0 g\times 4.186 J/g^oC\times (26.7^oC-25.0^oC)[/tex]
On substituting all values:
we get, [tex]m_1 = 95.52 g[/tex]
The mass of the silver block is 95.52 grams.