A silver block, initially at 58.4∘C, is submerged into 100.0 g of water at 25.0∘C in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.7∘C. The specific heat capacities for water and silver are Cs,water=4.18J/(g⋅∘C) and Cs,silver=0.235J/(g⋅∘C).

Respuesta :

Answer:

The mass of the silver block is 95.52 grams.

Explanation:

Heat lost by silver will be equal to heat gained by the water

[tex]-Q_1=Q_2[/tex]

Mass of silver= [tex]m_1[/tex]

Specific heat capacity of silver = [tex]c_1=0.235 J/g^oC [/tex]

Initial temperature of the silver = [tex]T_1=58.4^oC[/tex]

Final temperature of a silver = [tex]T_2=T=26.7^oC[/tex]=

[tex]Q_1=m_1c_1\times (T-T_1)[/tex]

Mass of water= [tex]m_1=100.0 g[/tex]

Specific heat capacity of water= [tex]c_2=4.186 J/g^oC [/tex]

Initial temperature of the water = [tex]T_3=25^oC[/tex]

Final temperature of water = [tex]T_3=T=26.7^oC[/tex]

[tex]Q_2=m_2c_2\times (T-T_3)[/tex]

[tex]-Q_1=Q_2[/tex]

[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]

[tex]-(m_1\times 0.235 J/g^oC\times (26.7^oC-58.4^oC))=100.0 g\times 4.186 J/g^oC\times (26.7^oC-25.0^oC)[/tex]

On substituting all values:

we get, [tex]m_1 = 95.52 g[/tex]

The mass of the silver block is 95.52 grams.

Q&A Education