Answer:
34.35 mg.
Step-by-step explanation:
We have been given that a radioactive substance decays exponentially. A scientist begins (t=0) with 200 milligrams of a radioactive substance, where the variable t represents time (in hours). After 24 hours, 100 mg of the substance remain.
We know that an exponential decay function is in form [tex]A(t)=a\cdot b^t[/tex], where,
A(t) = Final amount,
a = Initial value,
b = Decay rate,
t = time.
For our problem initial value (a) is 200, final amount is 100 and time is 24.
[tex]100=200\cdot b^{24}[/tex]
Let us solve for b.
[tex]\frac{100}{200}=\frac{200\cdot b^{24}}{200}[/tex]
[tex]0.5=b^{24}[/tex]
[tex]b=0.5^{\frac{1}{24}}[/tex]
So our required function is [tex]A(t)=100\times 0.5^{\frac{1}{24}*t}[/tex].
Substitute [tex]t=37[/tex] in above equation:
[tex]A(37)=100\times 0.5^{\frac{1}{24}*37}[/tex]
[tex]A(37)=100\times 0.5^{\frac{37}{24}}[/tex]
[tex]A(37)=100\times 0.3434884118645223[/tex]
[tex]A(37)=34.34884118645223[/tex]
[tex]A(37)\approx 34.35[/tex]
Therefore, 34.35 milligrams of substance will remain after 37 hours.