Respuesta :
Answer:
Given,
The universal set,
U = {1, 2, 3, 4, 5},
Let A = {1, 2},
B = {2, 3, 4}
[tex]A\cup B=\text{ all elements of A and B }=\{1, 2, 3, 4\}[/tex]
[tex](A\cup B)^c=U-(A\cup B) = \{1, 2, 3, 4, 5\} - \{1, 2, 3, 4\} = \{5\}[/tex]
Now,
[tex]A^c = U - A = \{3, 4, 5\}[/tex]
[tex]B^c=U-B=\{1, 5\}[/tex]
[tex]A^c\cup B^c = \{1, 3, 4, 5\}[/tex]
[tex]\implies (A\cup B)^c\neq A^c\cup B^c [/tex]
Hence, proved......
The counterexample is:
A = {1} and B = {1, 2}
the statement is true only if the intersection of the sets is empty.
How to find a counterexample?
We can define:
A = { 1 }
B = {1 , 2}
The union of A and B is:
A U B = {1, 2}
So we have:
A U B = B
Now, the elements that do not belong to the union are:
(A U B)c = U - (A U B)
Where U = {1, 2, 3, 4, 5}
Then we have:
(A U B)c = {1, 2, 3, 4, 5} - {1, 2} = {3, 4, 5}
If instead we take the union of Ac and Bc we get:
- Ac = U - A = {1, 2, 3, 4, 5} - {1} = {2, 3, 4, 5}
- Bc = U - B = {1, 2, 3, 4, 5} - {1, 2} = {3, 4, 5}
Then:
Ac U Bc =  {2, 3, 4, 5} ≠ {3, 4, 5} = (A U B)c
So we just found two sets A and B such that the statement is false, this is the counterexample.
If you want to learn more about counterexamples, you can read:
https://brainly.com/question/13458417