A working airplane engine makes a sound of frequency 12,000 Hz and the intensity level of 100 dB at a distance 100 m.

a) What is the pressure amplitude at this distance?
b) What is the displacement amplitude?
c) At what distance the sound intensity level drops to 50 dB?

Respuesta :

Answer:

a) The pressure amplitude at this distance is [tex]\Delta P_{max}=5.8 \times 10^{3} N/m^{2}[/tex]

b) The displacement amplitude is [tex]s_{max}=1.74 \times 10^{-4} m[/tex]

c) The distance at which the sound intensity level drops to 50 dB is [tex]r=89,200Km[/tex]

Explanation:

a) We need to convert to dB to watts, so [tex]P_{dB}=10\times log_{10}(P_{W})[/tex], then [tex]P_{W}=10^{\frac{P_{dB}}{10}= 10^{\frac{100}{10}} = 10^{10} W[/tex].

Then we can find Intensity at 100m, so  [tex]I=\frac{P_{pro}}{4 \pi r^{2} }= \frac{10^{10}W}{4 \pi (100m)^{2} }=75.6 \times 10^{3} W/m^{2}[/tex].

And finally, the pressure amplitude at this distance will be  [tex]\Delta P_{max}=\sqrt{\rho vI}=\sqrt{(1.29kg/m^{3})(343m/s)(75.6 \times 10^{3} W/m^{2})}  =5.8 \times 10^{3} N/m^{2}[/tex]

b) Using [tex]s_{max}=\frac{\Delta P_{max}}{\rho \omega v}[/tex], with [tex]\omega=2 \pi f=2 \pi (12000s^{-1})=\pi 24 \times 10^{3} s^{-1}[/tex], thus,

[tex]s_{max}=\frac{\Delta P_{max}}{\rho \omega v}= \frac{5.8 \times 10^{3} N/m^{2}}{(1.29kg/m^{3}) (\pi 24 \times 10^{3} s^{-1}) (343m/s) }= 1.74 \times 10^{-4} m[/tex]

c) We need to find intensity, so [tex]10 log_{10} (\frac{I}{I_{0}}) = 50[/tex], then,

[tex]I=10^{5} I_{0}=10^{5} \times 10^{-12} W/m^{2}=1.00 \times 10^{-7} W/m^{2}[/tex].

Finally, the distance at which the sound intensity level drops to 50 dB will be

[tex]r=\sqrt{\frac{P_{pro}}{4 \pi I}} =\sqrt{\frac{10^{10}W}{4 \pi (1.00 \times 10^{-7} W/m^{2})}}=89.2 \times 10^{6}m=89,200Km[/tex]

Q&A Education