A 700 kg elevator starts from rest. It moves upward for 4.50 s with constant acceleration until it reaches its cruising speed, 1.75 m/s. (a) What is the average power of the elevator motor during this period? W (b) How does this power compare with the motor power when the elevator moves at its cruising speed? Pcruising = W

Respuesta :

Answer

Given

Mass of the elevator , m = 700 kg

Initial velocity of elevator is , vi = 0 m/s

Time taken , t = 4.50 s

Speed of the elevator is, v = 1.75 m/s

Acceleration of elevator is , [tex]a = \dfrac{v}{t}[/tex]

                                          [tex]a = \dfrac{1.75}{4.5}[/tex]

                                                  a = 0.389 m/s²

a) Net force on elevator is

        T = mg + ma = m (g +a)

        T = 700 kg( 9.8+0.389)

         T = 7132.3 N

Average velocity is , v' = 1.75 /2 = 0.875 m/s

Average power , P = T v' = 7132.3 × 0.875 m/s

                           P = 6240.76 W

b) Power input from motor is

         P = F x v = mg x v

             = 700 x 9.8 * 1.75 m/s

        P = 12005 W

Answer:

(a). The average power of the elevator motor during this period is 6235.25 W.

(b). The power input from motor is [tex]1.2\times10^{4}\ W[/tex]

Explanation:

Given that,

Mass of elevator =700 kg

Initial velocity = 1.75 m/s

Time = 4.50 s

We need to calculate the acceleration of the elevator

Using formula of acceleration

[tex]a = \dfrac{v}{a}[/tex]

Put the value into the formula

[tex]a=\dfrac{1.75}{4.50}[/tex]

[tex]a=0.38\ m/s^2[/tex]

We need to calculate net force on elevator

Using formula of net force

[tex]T=mg+ma[/tex]

[tex]T=m(g-a)[/tex]

Put the value into the formula

[tex]T=700(9.8+0.38)[/tex]

[tex]T=7126\ N[/tex]

We need to calculate the average velocity

Using formula of average velocity

[tex]v'=\dfrac{v_{f}-v_{i}}{2}[/tex]

Put the value into the formula

[tex]v'=\dfrac{1.75-0}{2}[/tex]

[tex]v'=0.875\ m/s[/tex]

(a). We need to calculate the average power of the elevator motor during this period

Using formula of power

[tex]P=T\times v'[/tex]

Put the value into the formula

[tex]P=7126\times0.875[/tex]

[tex]P=6235.25\ W[/tex]

(b). We need to calculate power input from motor

Using formula of power

[tex]P=F\times v[/tex]

[tex]P=mg\times v[/tex]

Put the value into the formula

[tex]P=700\times9.8\times1.75[/tex]

[tex]P=1.2\times10^{4}\ W[/tex]

Hence, (a). The average power of the elevator motor during this period is 6235.25 W.

(b). The power input from motor is [tex]1.2\times10^{4}\ W[/tex]

Q&A Education