An object of mass 3M moves in the +x direction at 3 m/s. It breaks into two pices of mass M and 2M. Mass 2M moves in a direction 30 degrees above the x-axis and mass M moves in a direction 45 degrees below the x-axis. There is no gravity or air resistance to consider. Find the final velocities of the two masses.

Respuesta :

Answer:

Explanation:

Given

Initial mass 3 M

initial velocity u=3 m/s

3 M breaks into 2 M and M with velocity [tex]v_1[/tex] and [tex]v_2[/tex]

conserving momentum in x direction

[tex]3 M\times 3=2 M\times v_1\cos 30+M\times v_2\cos 45[/tex]-------------1

conserving Momentum in Y direction

[tex]0=2 M\times v_1\sin 30-M\times v_2\sin 45[/tex]

[tex]v_2=\sqrt{2}v_1[/tex]

substitute [tex]v_2[/tex] in 1

[tex]9 M=\sqrt{3}M v_1+M v_1[/tex]

[tex]v_1=\frac{9}{\sqrt{3}+1}=3.29 m/s[/tex]

[tex]v_2=\sqrt{2}v_1=4.65 m/s[/tex]

Ver imagen nuuk
Q&A Education