Answer:
[tex]3.85*10^{-5}m^3/a[/tex]
Explanation:
We need to find the average velocity of each plate, [tex]u_1[/tex] and [tex]u_2[/tex].
So substituting,
[tex]\bar{V_1} = \frac{1}{2}*u_1=\frac{1}{2}*5m/s=2.5m/s[/tex]
[tex]\bar{V_2} = \frac{1}{2}*u_2 = \frac{1}{2}*1.5m/s=0.75m/s[/tex]
The net velocity is: [tex]\bar{V_1}-\bar{V_2}=2.5-0.75=1.75m/s[/tex]
The flow rate = [tex]\bar{V}_{net}A = 1.75m/s * 5.5*10^{-3} * 4*10^{-3}[/tex]
The flow rate[tex]= \bar{V}_{net}A = 3.85*10^{-5}m^3/a[/tex]