Answer:
Amplitude will be [tex]A=8.3731\times 10^{-3}m[/tex]
Explanation:
We have given tension in the string T = 96.4 N
Power carried by the wave P = 0.392 W
Frequency of the wave f = 68.4 Hz
Velocity of the wave v = 401 m/sec
We know that velocity of transverse wave is given by [tex]v=\sqrt{\frac{T}{\mu }},[/tex] here T is tension and [tex]\mu[/tex] is mass per length
So [tex]401=\sqrt{\frac{96.4}{\mu }}[/tex]
[tex]\mu =6\times 10^{-4}kg/m[/tex]
Now angular frequency is given by [tex]\omega =2\pi f=2\times 3.14\times 68.4=429.552rad/sec[/tex]
Now power is given by
[tex]P=\frac{1}{2}\mu A^2\omega ^2v[/tex]
So [tex]0.392=\frac{1}{2}\times 6\times 10^{-4}\times A^2\times 429.552^2\times 401[/tex]
[tex]A=8.3731\times 10^{-3}m[/tex]