Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed [tex]\omega =40rad/s[/tex]
mass of [tex]m_2=0.8 kg[/tex] dropped at r=0.3 m from center
let [tex]\omega _2[/tex] be the final angular velocity of cylinder
Conserving Angular momentum
[tex]L_1=L_2[/tex]
[tex]\left ( \frac{m_1R^2}{2}\right )\omega =\left ( \frac{m_1R^2}{2}+m_2r^2\right )\omega _2[/tex]
[tex]\left ( \frac{18\cdot 1.7^2}{2}\right )\cdot 40=\left ( \frac{18\cdot 1.7^2}{2}+0.8\cdot 0.3^2\right )\omega _2[/tex]
[tex]26.01\times 40=26.082\times \omega _2[/tex]
[tex]\omega _2=39.88 rad/s[/tex]