Respuesta :
Answer: (0.132132, 0.274368)
Step-by-step explanation:
Given : A simple random sample of 123 people living in Gastown and finds that 25 have an annual income that is below the poverty line.
i.e. n= 123
[tex]\hat{p}=\dfrac{25}{123}\approx0.203252[/tex]
Critical value for 95% confidence interval : [tex]z_{\alpha/2}=1.96[/tex]
Confidence interval for population :
[tex]\hat{p}\pm z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
i.e. [tex]0.203252\pm (1.96)\sqrt{\dfrac{0.203252(1-0.203252)}{123}}[/tex]
[tex]0.203252\pm (1.96)\sqrt{\dfrac{0.203252(1-0.203252)}{123}}\\\\\0.203252\pm0.071118\\\\=(0.20325-0.071118,\ 0.203252+0.071118)\\\\=(0.132132,\ 0.274368)[/tex]
Hence, the 95% confidence interval for the true proportion of Gastown residents living below the poverty line : (0.132132, 0.274368)