Respuesta :

Answer:

cos

(

5

π

12

)

=

2

3

2

Explanation:

By the half angle formula:

XXXX

cos

(

θ

2

)

=

±

1

+

cos

(

θ

)

2

If  

θ

2

=

5

π

12

XXXX

then  

θ

=

5

π

6

Note that  

5

π

6

is a standard angle in quadrant 2 with a reference angle of  

π

6

so  

cos

(

5

π

6

)

=

cos

(

π

6

)

=

3

2

Therefore

XXXX

cos

(

5

π

12

)

=

±

1

3

2

2

XXXXXXXXXXX

=

±

2

3

2

2

XXXXXXXXXXX

=

±

2

3

4

XXXXXXXXXXX

=

±

2

3

2

Since  

5

π

12

<

π

2

XXXX

5

π

12

is in quadrant 1

XXXX

cos

(

5

π

12

)

is positive

XXXX

XXXX

XXXX

(the negative solution is extraneous)

answer in pic more explain

Ver imagen alejandrocampos54

Answer : The exact value of [tex]\sin (\frac{5\pi}{12})=\frac{\sqrt{(2+\sqrt{3})}}{2}[/tex]

Step-by-step explanation :

As we are given that: [tex]\sin (\frac{5\pi}{12})[/tex]

Using a half-angle identity:

[tex]\sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos\theta}{2}}[/tex]

[tex]\sin\left(\frac{\theta}{2}\right)=\sin \frac{(\frac{5\pi}{6})}{2}[/tex]

Thus, [tex]\theta=\frac{5\pi}{6}[/tex]

Now using half-angle identity, we get:

[tex]\sin\left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos\theta}{2}}[/tex]

[tex]\sin\left(\frac{(\frac{5\pi}{6})}{2}\right)=\sqrt{\frac{1-\cos (\frac{5\pi}{6})}{2}}[/tex]

[tex]\sin\left(\frac{(\frac{5\pi}{6})}{2}\right)=\sqrt{\frac{1-\cos (\pi -\frac{\pi}{6})}{2}}[/tex]

[tex]\sin\left(\frac{(\frac{5\pi}{6})}{2}\right)=\sqrt{\frac{1+\cos (\frac{\pi}{6})}{2}}[/tex]

As we know that,

[tex]\cos \frac{\pi}{6}=\cos 30^o=\frac{\sqrt{3}}{2}[/tex]

Now put the value of [tex]\cos \frac{\pi}{6}[/tex], we get:

[tex]\sin (\frac{5\pi}{12})=\sqrt{\frac{1+(\frac{\sqrt{3}}{2})}{2}}[/tex]

[tex]\sin (\frac{5\pi}{12})=\sqrt{\frac{(\frac{2+\sqrt{3}}{2})}{2}}[/tex]

[tex]\sin (\frac{5\pi}{12})=\sqrt{(\frac{2+\sqrt{3}}{4})}[/tex]

[tex]\sin (\frac{5\pi}{12})=\frac{\sqrt{(2+\sqrt{3})}}{2}[/tex]

Thus, the exact value of [tex]\sin (\frac{5\pi}{12})=\frac{\sqrt{(2+\sqrt{3})}}{2}[/tex]

Q&A Education