Answer:
656.09rad
Explanation:
We start from the equation of time based on the acceleration that says the following
[tex]x(t)= \frac{1}{2}at^2+v_0t+x_0[/tex]
We have this values practically,
[tex]v_0=23m/s \\t=8.60s\\a=1.3m/s^2\\x_0 = 0m[/tex]
Substituting,
[tex]x(8.6) = \frac{1}{2}(1.3)(8.6)^2+(23)(8.6)+0\\x(8.6)=203.39m[/tex]
Angular velocity is given by,
[tex]d_{\theta}=2\pi*(\frac{d}{2\pi r}) =\frac{d}{r} = \frac{203.39}{0.310} = 656.09rad[/tex]