Answer:
E=14.1641
Step-by-step explanation:
We have given that
[tex]\bar{X} = 80 \\s= 13.5 \\n= 6[/tex]
Assuming a confidence interval of 95% for \mu we have that,
[tex]\bar{X}-E< \mu < \bar{X}+E[/tex]
Where is Margin of error given by,
[tex]E=t_c (\frac{s}{\sqrt{n}})[/tex]
For 95% in the T-Table we have that [tex]t_c = 2.57[/tex], so
[tex]E=2.57*(\frac{13.5}{6}) = 14.1641[/tex]
So our Margin of error (E) is 14.1641