Respuesta :

Answer:

[tex]\frac{9}{4}[/tex]

Step-by-step explanation:

Given

x² - 3x

To make the expression a perfect square

add ( half the coefficient of the x- term )²

x² + 2( - [tex]\frac{3}{2}[/tex] )x + [tex]\frac{9}{4}[/tex], thus

x² - 3x + [tex]\frac{9}{4}[/tex]

= (x - [tex]\frac{3}{2}[/tex])² ← a perfect square

The value that must be added to the expression [tex]x^2- 3x[/tex] to make it a perfect square is (b) 9/4

The expression is given as:

[tex]x^2 - 3x[/tex]

Represent the coefficient of x with k.

So, we have:

[tex]k =-3[/tex]

Divide both sides of the equation by 2

[tex]\frac k2 =-\frac 32[/tex]

Take the square of both sides

[tex](\frac k2)^2 =(-\frac 32)^2[/tex]

Evaluate the squares

[tex](\frac k2)^2 =\frac 94[/tex]

Hence, the value that must be added to the expression [tex]x^2- 3x[/tex] to make it a perfect square is (b) 9/4

Read more about perfect squares at:

https://brainly.com/question/1214333

Q&A Education