What is 7√11√ in simplest radical form?
Enter your answer in the box.
Answer:
[tex]\frac{\sqrt{77} }{11}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex] and
[tex]\sqrt{a}[/tex] × [tex]\sqrt{a}[/tex] = a
Given
[tex]\frac{\sqrt{7} }{\sqrt{11} }[/tex]
To rationalise the denominator multiply numerator/ denominator by [tex]\sqrt{11}[/tex]
[tex]\frac{\sqrt{7} }{\sqrt{11} }[/tex] × [tex]\frac{\sqrt{11} }{\sqrt{11} }[/tex]
= [tex]\frac{\sqrt{7(11)} }{\sqrt{11(11)} }[/tex]
= [tex]\frac{\sqrt{77} }{11}[/tex]