Respuesta :

Answer:

[tex]P(x) = x^{2}  + x(5-4i) - 20i[/tex] is the required polynomial function of the form [tex]ax^{2}  + bx +c[/tex]

Step-by-step explanation:

The given zeroes of the polynomial is -5 and 4i.

It implies, the roots of the polynomial is (x+5) and (x-4i)

Now, The Polynomial = Product of all its roots

So, here P(x) =  ( x + 5)( x - 4i)

or, [tex]P(x) = x (x-4i) + 5(x-4i)  = x^{2}  - 4ix + 5x - 20i[/tex]

⇒[tex]P(x) = x^{2}  + x(5-4i) - 20i[/tex]

Hence, P(x) is the required polynomial function of the form [tex]ax^{2}  + bx +c[/tex]

Q&A Education