Respuesta :

Answer:

(a) [tex]A(x)=160x-2x^{2}[/tex]

(b) [tex]x=40\textrm{ m}[/tex]

(c) Maximum area[tex]=3200[/tex] square meters

Step-by-step explanation:

(a)

Given:

Total length for fencing = 160 m

Width of the rectangle = [tex]x[/tex] m.

Let the other length of the rectangle be [tex]y[/tex] m.

Then, from the figure,

[tex]x+y+x=160\\2x+y=160\\y=160-2x[/tex]

Now, area of a rectangle is equal to the product of its length and width.

So, area is, [tex]A(x)=xy=x(160-2x)=160x-2x^{2}[/tex]

(b)

Given:

[tex]A(x)=160x-2x^{2}[/tex]

For maximum area, derivative of area with respect to [tex]x[/tex] must be 0.

So, [tex]\frac{dA}{dx}=0\\\frac{d}{dx}(160x-2x^{2})=0\\160-4x=0\\4x=160\\x=\frac{160}{4}=40\textrm{ m}[/tex]

Therefore, for maximum area, [tex]x=40\textrm{ m}[/tex].

(c)

Given:

[tex]A(x)=160x-2x^{2}[/tex]

Maximum area occurs at [tex]x=40[/tex]. Plug in 40 for [tex]x[/tex] in [tex]A(x)[/tex] expression. This gives,

Maximum area is,

[tex]A(x=40)=160(40)-2(40)^{2}\\A(x=40)=6400-2\times 1600\\A(x=40)=6400-3200=3200\textrm{ }m^{2}[/tex]

Therefore, maximum area is 3200 square meters.

Otras preguntas

Q&A Education