The molar concentrations for the reactants and products at equilibrium are found to be [HCl]=0.80 M, [O2]=0.20 M, [Cl2]=3.0 M, and [H2O]=3.0 M. What is the value of the equilibrium constant for this reaction?
4HCl(g)+O2(g)⇌2Cl2(g)+2H2O(g)

Respuesta :

znk

Answer:

[tex]\large \boxed{990}[/tex]

Explanation:

                  4HCl +  O₂  ⇌  2Cl₂ + 2H₂O

E/mol·L⁻¹:   0.80    0.20      3.0       3.0

[tex]K_{\text{eq}} = \dfrac{\text{[Cl$_{2}$]$^{2}$[H$_{2}$O]$^{2}$}}{\text{[HCl]$^{4}$[O$_{2}$]}} = \dfrac{3.0^{2}\times3.0^{2}}{0.80^{4}\times 0.20} = \mathbf{990}\\\\\text{The $K_{\text{eq}}$ value is $\large \boxed{\mathbf{990}}$}[/tex]

Answer : The value of the equilibrium constant for this reaction is [tex]9.9\times 10^2[/tex]

Solution :  Given,

Concentration of HCl at equilibrium = 0.80 M

Concentration of [tex]O_2[/tex] at equilibrium = 0.20 M

Concentration of [tex]Cl_2[/tex] at equilibrium = 3.0 M

Concentration of [tex]H_2O[/tex] at equilibrium = 3.0 M

Now we have to calculate the value of equilibrium constant.

The given equilibrium reaction is,

[tex]4HCl(g)+O_2(g)\rightleftharpoons 2Cl_2(g)+2H_2O(g)[/tex]

The expression of [tex]K_c[/tex] will be,

[tex]K_c=\frac{[Cl_2]^2[H_2O]^2}{[HCl]^4[O_2]}[/tex]

Now put all the values in this expression, we get:

[tex]K_c=\frac{(3.0)^2\times (3.0)^2}{(0.80)^4\times (0.20)}[/tex]

[tex]K_c=988.77=9.9\times 10^2[/tex]

Therefore, the value of the equilibrium constant for this reaction is [tex]9.9\times 10^2[/tex]

Q&A Education