Respuesta :

Answer:

[tex]f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4[/tex]

Step-by-step explanation:

Given:

The function, [tex]H(x)=\sqrt[3]{6x^{2}-4}[/tex]

Solution 1:

Let [tex]f(x)=\sqrt[3]{x}[/tex]

If [tex]f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}[/tex], then,

[tex]\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4[/tex]

Solution 2:

Let [tex]f(x)=\sqrt[3]{x-4}[/tex]. Then,

[tex]f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}[/tex]

Similarly, there can be many solutions.

Q&A Education