The second person is walking faster than the first person.
Solution:
Given, One person walks [tex]\frac{9}{20}[/tex] miles in each [tex]\frac{3}{4}[/tex] hour.
Another person walks [tex]\frac{8}{15}[/tex] miles in each [tex]\frac{2}{3}[/tex] hour.
We have to find who is walking faster?
Now, we know that, distance = speed x time
Let us find the speed of each person
Speed of first person:
[tex]\begin{array}{l}{\text { Speed of } 1 \mathrm{st} \text { person } \rightarrow \frac{9}{20}=\text { speed } \times \frac{3}{4}} \\\\ {\rightarrow \frac{9}{20} \times \frac{4}{3}=\text { speed }} \\\\ {\rightarrow \text { speed }=\frac{3}{5}}\end{array}[/tex]
Speed of second person:
[tex]\begin{array}{l}{\text { Now, speed of } 2^{\text {nd }} \text { person } \rightarrow \frac{8}{15}=\text { speed } \times \frac{2}{3}} \\\\ {\rightarrow \frac{8}{15} \times \frac{3}{2}=\text { speed }} \\\\ {\rightarrow \text { speed }=\frac{4}{5}}\end{array}[/tex]
We know that, [tex]\frac{3}{5} < \frac{4}{5}[/tex]
Hence, the second person is walking faster than the first person.