Respuesta :

[tex]\bf \begin{array}{|rr|ll} \cline{1-2} x&y\\ \cline{1-2} 13&11\\ 14&6\\ 15&1\\ 16&-4 &\\ \cline{1-2} \end{array} \begin{array}{llll} \textit{using these points}\\\\ \leftarrow \\\\ \leftarrow \end{array}~\hfill (\stackrel{x_1}{14}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{16}~,~\stackrel{y_2}{-4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-4}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{16}-\underset{x_1}{14}}}\implies \cfrac{-10}{2}\implies -5[/tex]

zutzut

Answer:

slope is -5

Step-by-step explanation:

slope =[tex]\frac{y_{2} -y_{1}}{x_{2} -x_{1}}[/tex]

Plug in two points

Q&A Education